Skip to content

yangxin6/PlaneSegNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PlaneSegNet

Network

Fig6.jpg

Environment

sudo apt-get install libsparsehash-dev

conda create -n pointcept python=3.8 -y
conda activate pointcept
conda install ninja -y
# Choose version you want here: https://pytorch.org/get-started/previous-versions/
# We use CUDA 11.8 and PyTorch 2.1.0 for our development of PTv3
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia
conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx yapf addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y
pip install torch-geometric

cd libs/pointgroup_ops
python setup.py install
cd ../..


# PTv1 & PTv2 or precise eval
cd libs/pointops
# usual
python setup.py install

# spconv (SparseUNet)
# refer https://github.com/traveller59/spconv
pip install spconv-cu118  # choose version match your local cuda version

# Open3D (visualization, optional)
pip install open3d
 conda install -c conda-forge gcc


# MinkowskiEngine
sudo apt install libopenblas-dev
conda install -c conda-forge blas openblas
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd lib/MinkowskiEngine
python setup.py install --blas_include_dirs=/opt/anaconda3/envs/pointcept2/include --blas=openblas

Dataset

We conducted tests on a total of 20 datasets obtained from different types of sensors.

datasets link

Additionally, we express our gratitude to several scholars who shared their data with us. We processed and annotated these data for testing purposes. The original links to these data include:

Train

python tools/train.py --config-file configs/corn3d_group_semantic/full/semseg-spvunet-v1m2-base.py

Test

python tools/test.py --config-file configs/corn3d_group_semantic/full/semseg-spvunet-v1m2-base.py  --options save_path="{weight_path}"  weight="{weight_path}/model_best.pth"

We provide our best model weights here: model_pth

Reference

Citation

If you find this project useful in your research, please consider cite:

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published