Trident: tri-modal molecular representation learning with taxonomic annotations and local correspondence
Molecular representation learning with SMILES, text, HTA, and functional groups.
├── main.py # Main entry
├── config.py # Configuration
├── dataset.py # Data processing
├── models.py # Model definitions
├── train.py # Training logic
├── utils.py # Utilities
├── data/ # Data directory
└── save_model/ # Model outputs
# Create a new conda environment
conda create -n TRIDENT python=3.10
# Activate the environment
conda activate TRIDENT
# Install dependencies
pip install -r requirements.txt# Basic training
CUDA_VISIBLE_DEVICES=0,1 python main.py
# Custom settings
CUDA_VISIBLE_DEVICES=0,1 python main.py --batch_size 32 --epochs 50cd inference/
python get_embeddings.py