Skip to content

uijinee/pixel_Satellite-Image-Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

64 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ›ฐ๏ธSW์ค‘์‹ฌ๋Œ€ํ•™ ๊ณต๋™ AI ๊ฒฝ์ง„๋Œ€ํšŒ 2023 (Satellite Image Building Area Segmentation)

[PIXEL Team]
ColdTbrew
hyjk826
uijinee
junghyun2moon

Index

๋Œ€ํšŒ ์‚ฌ์ดํŠธ

๋ฐ์ด์ฝ˜

์ฃผ์ œ ์„ ์ • ๋ฐฐ๊ฒฝ

image

InternImage ๐ŸŒƒ

Install mmseg

Installation

Pretrained Checkpoints

  1. INTERN_best_mDice_iter_336000.pth
    Download Link

  2. INTERN_k1_best_mDice_iter_210000.pth
    Download Link

  3. INTERN_k3_best_mDice_iter_220000.pth
    Download Link

  4. INTERN_k4_best_mDice_iter_280000.pth
    Download Link

How to start training

   cd mmseg_0.x.x
   python segmentation/train.py work_dirs/no4/INTERN_config.py

How to start inference

   cd mmseg_0.x.x
   python segmentation/inference.py

SWINv2 ๐ŸŒŒ

Install mmseg

Installation

Pretrained path

  1. Swin Pretrained pth
    Download Link

Pretrained Checkpoints

  1. swin_best_mDice_iter_320000.pth (160k + 160k)
    Google Drive Link

How to start training

  1. Training:
    cd mmseg_1.x.x
    python tools/train.py work_dirs/swin/swin_config.py
    

How to start inference

cd mmseg_1.x.x
python work_dirs/swin/infer.py

Mask2Former ๐Ÿ–ผ๏ธ

Install mmseg

Installation

Pretrained Checkpoints

  1. m2f_K2_best_mDice_iter_90000.pth (90k)
    Google Drive Link

  2. m2f_K3_best_mDice_iter_90000.pth (90k + 90k)
    Google Drive Link

  3. m2f_K4_best_mDice_iter_90000.pth (90k + 90k)
    Google Drive Link

How to start training

  1. K2 Training:

    cd mmseg_1.x.x
    python tools/train.py work_dirs/mask2former/m2f_config_k2.py
    
  2. K3 Training:

    cd mmseg_1.x.x
    python tools/train.py work_dirs/mask2former/m2f_config_k3.py
    
  3. K4 Training:

    cd mmseg_1.x.x
    python tools/train.py work_dirs/mask2former/m2f_config_k4.py
    

How to start inference

cd mmseg_1.x.x
python work_dirs/mask2former/infer_m2f.py

Ensemble ๐ŸŽฏ

Ensemble

  1. Swin (๋‹จ์ผ ๋ชจ๋ธ)
  2. internimage
    • best_mDice_iter_336000 + k1 + k3 + k4 (threshold = 2)
  3. mask2former
    • k2 + k3 + k4 (threshold = 2)

last submit
swin + internimage + mask2former (threshold = 2)

Extra ensemble

Ensemble_by_weight
์ ์ˆ˜๋ฅผ ์ตœ๋Œ€ํ•œ ๋†’์ด๊ธฐ ์œ„ํ•ด csv ์•™์ƒ๋ธ”์˜ ๋‹จ์ ์ธ threshold๋ฅผ ๋‹ค์–‘ํ•˜๊ฒŒ ์ ์šฉํ•ด ๋ณด๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์ œ์ถœ .csv ํŒŒ์ผ์„ ์ด์šฉํ•ด ๊ฐ๊ฐ submit.csv์˜ public score๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๊ฐ๊ฐ ๊ฐ€์ค‘์น˜๋ฅผ ์ฃผ์–ด ์•™์ƒ๋ธ” ํ›„ ensemble8_21_th0.35.csv ์ƒ์„ฑํ•ด ์ตœ๊ณ  public score๋ฅผ 0.8226๋ฅผ ๋„๋‹ฌํ•จ

System environment: ๐Ÿ–ฅ๏ธ

  • sys.platform: linux
  • Python: 3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0]
  • CUDA available: True
  • numpy_random_seed: 1545188287
  • GPU 0: A100-SXM4-40GB
  • CUDA_HOME: /usr/local/cuda
  • NVCC: Cuda compilation tools, release 11.0, V11.0.221
  • GCC: gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
  • PyTorch: 1.12.1

PyTorch compiling details:

  • GCC 9.3

  • C++ Version: 201402

  • Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications

  • Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)

  • OpenMP 201511 (a.k.a. OpenMP 4.5)

  • LAPACK is enabled (usually provided by MKL)

  • NNPACK is enabled

  • CPU capability usage: AVX2

  • CUDA Runtime 11.3

  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37

  • CuDNN 8.3.2 (built against CUDA 11.5)

  • Magma 2.5.2

  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS=-fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,

  • TorchVision: 0.13.1

  • OpenCV: 4.8.0

  • MMEngine: 0.8.2

Runtime environment:

  • cudnn_benchmark: True
  • mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
  • dist_cfg: {'backend': 'nccl'}
  • seed: 1545188287
  • Distributed launcher: none
  • Distributed training: False
  • GPU number: 1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •