Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 98 additions & 15 deletions docs/source/multi-dd.rst
Original file line number Diff line number Diff line change
Expand Up @@ -276,27 +276,110 @@ You need to explicitly convert the data, which you can do as follows:
entry.put(imas.convert_ids(equilibrium, entry.dd_version))


.. _`UDA backend and DD versions`:

.. _`DD background`:
UDA backend caching and Data Dictionary versions
------------------------------------------------

Background information
----------------------
If you try to load data from a different Data Dictionary version with the UDA backend,
you may see the following error:

.. code-block:: text

The Data Dictionary version of the data (3.38.1) is different from the Data
Dictionary version of the DBEntry (3.42.0). This is not supported when using the
UDA backend.

There are three possible workarounds. The first two require passing an additional option
in the IMAS UDA URI: please see the `imas-core documentation
<https://imas-core.readthedocs.io/en/stable/user_guide/backends_guide.html#query-keys-specific-for-the-uda-backend>`__
for more details on these URI options.

1. Use UDA fetch to bypass the cache problem. You can do this by appending ``&fetch=1``
to the URI when you create the :py:class:`~imas.db_entry.DBEntry`.

Note that this will download the entire IDS files from the remote server, this may
not be desired if you only want to read a single time slice.
2. Disable the UDA cache. You can do this by appending ``&cache_mode=none`` to the URI
when you create the :py:class:`~imas.db_entry.DBEntry`.

Note that this may make the ``get()`` (a lot) slower, since a separate request needs
to be sent to the remote UDA server for every data variable. However, this may still
be the best performing option if you are only interested in a subset of all the data
in an IDS (and use :ref:`lazy loading`).
3. Explicitly provide the data dictionary version when you create the
:py:class:`~imas.db_entry.DBEntry`, setting it to match the Data Dictionary version
of the data you want to load. To obtain the version of the data on the remote server
from the field `ids_properties.put_version.data_dictionary` via a _lazy_ ``get()``
with ``autoconvert=False`` option and using the ``&cache_mode=none`` query in the URI.

Note that you may need to call ``imas.convert_ids`` to convert the IDS to your
desired Data Dictionary version.

All three possible workarounds are shown in the examples below:

.. md-tab-set::

.. md-tab-item:: Original code

.. code-block:: python

import imas

URI = (
"imas://uda.iter.org:56565/uda?backend=hdf5"
"&path=/work/imas/shared/imasdb/ITER/3/121013/50"
)
with imas.DBEntry(URI, "r") as entry:
cp = entry.get("core_profiles")

Since IMAS-Python needs to have access to multiple DD versions it was chosen to
bundle these with the code at build-time, in setup.py. If a git clone of the
Data Dictionary succeeds, the setup tools automatically download saxon and
generate ``IDSDef.xml`` for each of the tagged versions in the DD git
repository. These are then gathered into ``IDSDef.zip``, which is
distributed inside the IMAS-Python package.
.. md-tab-item:: 1. Use UDA fetch

To update the set of data dictionaries new versions can be added to the zipfile.
A reinstall of the package will ensure that all available versions are included
in IMAS-Python. Additionally an explicit path to an XML file can be specified, which
is useful for development.
.. code-block:: python

Automated tests have been provided that check the loading of all of the DD
versions tagged in the data-dictionary git repository.
import imas

URI = (
"imas://uda.iter.org:56565/uda?backend=hdf5"
"&path=/work/imas/shared/imasdb/ITER/3/121013/50&fetch=1"
)
with imas.DBEntry(URI, "r") as entry:
cp = entry.get("core_profiles")

.. md-tab-item:: 2. Disable the UDA cache

.. code-block:: python

import imas

URI = (
"imas://uda.iter.org:56565/uda?backend=hdf5"
"&path=/work/imas/shared/imasdb/ITER/3/121013/50&cache_mode=none"
)
with imas.DBEntry(URI, "r") as entry:
cp = entry.get("core_profiles")

.. md-tab-item:: 3. Explicitly provide the DD version

.. code-block:: python

import imas

URI = (
"imas://uda.iter.org:56565/uda?backend=hdf5"
"&path=/work/imas/shared/imasdb/ITER/3/121013/50"
)
with imas.DBEntry(URI, "r", dd_version="3.38.1") as entry:
cp = entry.get("core_profiles")

# Optional: convert the IDS to your desired DD version
cp = imas.convert_ids(cp, "3.42.0")


.. _`DD background`:

Background information
----------------------

Data Dictionary definitions
'''''''''''''''''''''''''''
Expand Down
16 changes: 16 additions & 0 deletions imas/backends/imas_core/db_entry_al.py
Original file line number Diff line number Diff line change
Expand Up @@ -257,6 +257,22 @@ def read_dd_version(self, ids_name: str, occurrence: int) -> str:
raise DataEntryException(
f"IDS {ids_name!r}, occurrence {occurrence} is empty."
)

# UDA caching doesn't play well when the DD version of the on-disk IDS doesn't
# match the DD version of this DBEntry. See GH#97
if self.backend == "uda" and dd_version != self._ids_factory.dd_version:
cache_mode = self._querydict.get("cache_mode")
fetch = self._querydict.get("fetch")
if cache_mode != "none" and fetch not in ("1", "true"):
raise RuntimeError(
f"The Data Dictionary version of the data ({dd_version}) is "
"different from the Data Dictionary version of the DBEntry "
f"({self._ids_factory.dd_version}). This is not supported when "
f"using the UDA backend. See {imas.PUBLISHED_DOCUMENTATION_ROOT}"
"multi-dd.html#uda-backend-caching-and-data-dictionary-versions "
"for more details and workarounds."
)

return dd_version

def put(self, ids: IDSToplevel, occurrence: int, is_slice: bool) -> None:
Expand Down
80 changes: 80 additions & 0 deletions imas/test/test_dbentry_uda.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
from pathlib import Path
import os
from unittest.mock import patch

import pytest
from packaging.version import Version

from imas import DBEntry
from imas.ids_defs import READ_OP


@pytest.fixture
def mock_read_data():
return {
"ids_properties/homogeneous_time": 1,
"ids_properties/version_put/data_dictionary": "4.0.0",
}


@pytest.fixture
def mock_ll_interface(mock_read_data):
"""Mock the IMAS lowlevel interface so we can still test the our UDA-specific logic.

Since we don't have a public UDA server available to test against, this is the
next-best thing.
"""
with patch("imas.backends.imas_core.db_entry_al.ll_interface") as mock_ll_interface:
mock_ll_interface.begin_dataentry_action.return_value = (0, 0)
mock_ll_interface.begin_global_action.return_value = (0, 0)
mock_ll_interface.begin_arraystruct_action.return_value = (0, 0, 0)
mock_ll_interface.close_pulse.return_value = 0
mock_ll_interface._al_version = Version("5.6.0")

def read_data(ctx, fieldPath, pyTimebasePath, ualDataType, dim):
return 0, mock_read_data.get(fieldPath)

mock_ll_interface.read_data.side_effect = read_data

# Also patch in al_context.py:
with patch(
"imas.backends.imas_core.al_context.ll_interface", mock_ll_interface
):
yield mock_ll_interface


def test_uda_idsdef_path(mock_ll_interface):
# Check that IDSDEF_PATH env variable is set for the UDA backend
with DBEntry("imas:uda?mock", "r", dd_version="4.0.0"):
assert "IDSDEF_PATH" in os.environ
path1 = Path(os.environ["IDSDEF_PATH"])
assert path1.exists()
with DBEntry("imas:uda?mock", "r", dd_version="3.42.0"):
assert "IDSDEF_PATH" in os.environ
path2 = Path(os.environ["IDSDEF_PATH"])
assert path2.exists()
assert path1 != path2


def test_uda_datapath(mock_ll_interface):
# Check that datapath is set when requesting the dd version
with DBEntry("imas:uda?mock", "r", dd_version="4.0.0") as entry:
mock_ll_interface.begin_global_action.assert_not_called()
entry.get("mhd", lazy=True)
# pulseCtx=0, dataobjectname="mhd", rwmode=READ_OP, datapath="ids_properties"
mock_ll_interface.begin_global_action.assert_called_with(
0, "mhd", READ_OP, "ids_properties"
)


def test_uda_version_mismatch_exception(mock_ll_interface):
# Check that we get an exception when versions mismatch
with pytest.raises(RuntimeError, match="Data Dictionary version"):
DBEntry("imas:uda?path=mock", "r", dd_version="4.1.0").get("mhd")
# No exceptions when using cache_mode=none
DBEntry("imas:uda?path=mock&cache_mode=none", "r", dd_version="4.1.0").get("mhd")
# Or when using fetch
DBEntry("imas:uda?path=mock&fetch=true", "r", dd_version="4.1.0").get("mhd")
DBEntry("imas:uda?path=mock&fetch=1", "r", dd_version="4.1.0").get("mhd")
# Or when using the exact same DD version
DBEntry("imas:uda?path=mock", "r", dd_version="4.0.0").get("mhd")
Loading