Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/classifai/indexers/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -632,7 +632,7 @@ def search(self, query: VectorStoreSearchInput, n_results=10, batch_size=8) -> V
{
"query_id": np.repeat(query_ids_batch, n_results),
"query_text": np.repeat(query_text_batch, n_results),
"rank": np.tile(np.arange(n_results), len(query_text_batch)),
"rank": np.tile(np.arange(1, n_results + 1), len(query_text_batch)),
"score": scores.flatten(),
}
)
Expand Down
36 changes: 36 additions & 0 deletions src/classifai/servers/pydantic_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,18 @@ def convert_dataframe_to_reverse_search_pydantic_response(df: pd.DataFrame, meta
Returns:
RevResultsResponseBody: Pydantic model containing the structured response.
"""
# identify metadata columns from the DataFrame by checking which columns are in the meta_data dictionary
hook_columns = (
set(df.columns)
.difference(meta_data.keys())
.difference(
{
"id",
"doc_id",
"doc_text",
}
)
)
results_list = []

# Group rows by `id`
Expand All @@ -127,12 +139,16 @@ def convert_dataframe_to_reverse_search_pydantic_response(df: pd.DataFrame, meta
# Extract metadata columns dynamically
metadata_values = {meta: row[meta] for meta in meta_data if meta in row}

# Find other values - added by hooks - any other per-row columns not in reserved/meta
other_values = {k: v for k, v in row.items() if k in hook_columns}

# Create a RevResultEntry object
response_entries.append(
RevResultEntry(
label=row["doc_id"],
description=row["doc_text"],
**metadata_values, # Add metadata dynamically
**other_values, # Add any extra columns dynamically
)
)

Expand Down Expand Up @@ -160,6 +176,22 @@ def convert_dataframe_to_pydantic_response(df: pd.DataFrame, meta_data: dict) ->
Returns:
ResultsResponseBody: Pydantic model containing the structured response.
"""
# identify metadata columns from the DataFrame by checking which columns are in the meta_data dictionary
hook_columns = (
set(df.columns)
.difference(meta_data.keys())
.difference(
{
"query_id",
"query_text",
"doc_id",
"doc_text",
"score",
"rank",
}
)
)

# Group rows by `query_id`
grouped = df.groupby("query_id")

Expand All @@ -174,6 +206,9 @@ def convert_dataframe_to_pydantic_response(df: pd.DataFrame, meta_data: dict) ->
# Extract metadata columns dynamically
metadata_values = {meta: row[meta] for meta in meta_data}

# Find other values - added by hooks - any other per-row columns not in reserved/meta
other_values = {k: v for k, v in row.items() if k in hook_columns}

# Create a ResultEntry object
response_entries.append(
ResultEntry(
Expand All @@ -182,6 +217,7 @@ def convert_dataframe_to_pydantic_response(df: pd.DataFrame, meta_data: dict) ->
score=row["score"], # Assuming `score` is a column in the DataFrame
rank=row["rank"], # Assuming `rank` is a column in the DataFrame
**metadata_values, # Add metadata dynamically
**other_values, # Add any extra columns dynamically
)
)

Expand Down