Skip to content

Agentic system learning hub using LangGraph. Shows how to build reasoning graphs, integrate tools, run RAG with FAISS, add SQLite memory, trace with LangSmith, and expose demos via Streamlit. Educational templates, not production code.

License

Notifications You must be signed in to change notification settings

ayushsyntax/Langgraph-Practice

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LangGraph Agentic Systems — Learning & Reference Hub

Python LangGraph Streamlit OpenAI FAISS SQLite MCP LangSmith


Purpose

This repository serves as a small, focused learning space for developers exploring how to build agentic systems using LangGraph. It provides working examples for patterns such as tool integration, RAG pipelines, persistent memory, Streamlit frontends, and MCP connectivity.

The intent is educational: the code functions as a set of reference templates, not a packaged production system.


Learning Outcomes

✔ Transition from linear prompting to graph-based execution ✔ Build RAG pipelines using FAISS for grounded responses ✔ Attach real-world tools (search, calculator, stock prices) ✔ Wrap agent workflows in Streamlit-driven demos ✔ Connect external processes via MCP ✔ Use STM/LTM memory for multi-session continuity ✔ Trace workflows with LangSmith for inspection and debugging


Module Breakdown

📌 1. Graph Orchestration

langgraph_backend.py Branching logic, loops, corrective flow, state tracking.


📌 2. Retrieval-Augmented Generation (RAG)

langgraph_rag_backend.py PDF ingestion → embeddings → FAISS similarity → grounded answers.


📌 3. Tool Execution

langgraph_tool_backend.py Search, calculator, stock price querying via agent tool calls.


📌 4. Model Context Protocol (MCP)

langgraph_mcp_backend.py Connecting to external processes through a standard protocol.


📌 5. Memory & Persistence

langgraph_database_backend.py SQLite checkpointing for resume + HITL workflows. Notebooks demonstrate STM vs LTM strategies and summarization.


Repository Structure

📂 Project
│
├── *.ipynb                       # Notebook tutorials (STM, LTM, HITL)
├── langgraph_*.py                # Backends (Agents, RAG, Tools, MCP, Persistence)
├── streamlit_*.py                # Frontend UI demos
├── mcp_server.py                 # MCP server entry point
├── chatbot.db                    # SQLite persistence layer
├── requirements.txt              # Dependencies
├── .env                          # Environment variables (ignored)
├── .gitignore
└── LICENSE

Installation & Environment

Requirements: • Python ≥ 3.10 • Git

Setup:

git clone <repository-url>
cd chatbot
python -m venv venv

Activate:

Windows:

venv\Scripts\activate

macOS/Linux:

source venv/bin/activate

Install:

pip install -r requirements.txt

Environment Configuration

.env file:

OPENAI_API_KEY=...
LANGSMITH_TRACING=true
LANGSMITH_API_KEY=...
LANGSMITH_PROJECT=chatbot-project

Optional:

GROQ_API_KEY=...
TAVILY_API_KEY=...

Running Modules

RAG demo:

streamlit run streamlit_rag_frontend.py

Tools demo:

streamlit run streamlit_frontend_tool.py

Streaming:

streamlit run streamlit_frontend_streaming.py

Basic:

streamlit run streamlit_frontend.py

Tech Stack

🧠 Reasoning & Agent Orchestration

LangGraph OpenAI

📚 Retrieval & Embeddings

FAISS HuggingFace

🧰 Tools & Connectivity

MCP Tools demonstrated: Search, Calculator, Stock APIs

🗄 Persistence & State

SQLite

🖥 Frontend Demos

Streamlit

📊 Tracing & Evaluation

LangSmith


License

Licensed under the MIT License.

About

Agentic system learning hub using LangGraph. Shows how to build reasoning graphs, integrate tools, run RAG with FAISS, add SQLite memory, trace with LangSmith, and expose demos via Streamlit. Educational templates, not production code.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published