This repository serves as a small, focused learning space for developers exploring how to build agentic systems using LangGraph. It provides working examples for patterns such as tool integration, RAG pipelines, persistent memory, Streamlit frontends, and MCP connectivity.
The intent is educational: the code functions as a set of reference templates, not a packaged production system.
✔ Transition from linear prompting to graph-based execution ✔ Build RAG pipelines using FAISS for grounded responses ✔ Attach real-world tools (search, calculator, stock prices) ✔ Wrap agent workflows in Streamlit-driven demos ✔ Connect external processes via MCP ✔ Use STM/LTM memory for multi-session continuity ✔ Trace workflows with LangSmith for inspection and debugging
langgraph_backend.py
Branching logic, loops, corrective flow, state tracking.
langgraph_rag_backend.py
PDF ingestion → embeddings → FAISS similarity → grounded answers.
langgraph_tool_backend.py
Search, calculator, stock price querying via agent tool calls.
langgraph_mcp_backend.py
Connecting to external processes through a standard protocol.
langgraph_database_backend.py
SQLite checkpointing for resume + HITL workflows.
Notebooks demonstrate STM vs LTM strategies and summarization.
📂 Project
│
├── *.ipynb # Notebook tutorials (STM, LTM, HITL)
├── langgraph_*.py # Backends (Agents, RAG, Tools, MCP, Persistence)
├── streamlit_*.py # Frontend UI demos
├── mcp_server.py # MCP server entry point
├── chatbot.db # SQLite persistence layer
├── requirements.txt # Dependencies
├── .env # Environment variables (ignored)
├── .gitignore
└── LICENSE
Requirements: • Python ≥ 3.10 • Git
Setup:
git clone <repository-url>
cd chatbot
python -m venv venv
Activate:
Windows:
venv\Scripts\activate
macOS/Linux:
source venv/bin/activate
Install:
pip install -r requirements.txt
.env file:
OPENAI_API_KEY=...
LANGSMITH_TRACING=true
LANGSMITH_API_KEY=...
LANGSMITH_PROJECT=chatbot-project
Optional:
GROQ_API_KEY=...
TAVILY_API_KEY=...
RAG demo:
streamlit run streamlit_rag_frontend.py
Tools demo:
streamlit run streamlit_frontend_tool.py
Streaming:
streamlit run streamlit_frontend_streaming.py
Basic:
streamlit run streamlit_frontend.py
Tools demonstrated: Search, Calculator, Stock APIs
Licensed under the MIT License.