-
Notifications
You must be signed in to change notification settings - Fork 12
ENH: tripwise metrics computed with sample_weight argument #300
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
Summary of ChangesHello @VincentAuriau, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed! This pull request significantly enhances the Highlights
Using Gemini Code AssistThe full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips. Invoking Gemini You can request assistance from Gemini at any point by creating a comment using either
Customization To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a Limitations & Feedback Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here. You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension. Footnotes
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Code Review
This pull request introduces support for sample_weight in trip-wise metrics and for validation datasets, which is a valuable enhancement. The implementation is generally well-done, with corresponding updates to the evaluate and fit methods, and a new test case to validate the changes. However, I've identified a critical bug in choice_learn/basket_models/data/basket_dataset.py that could lead to a ZeroDivisionError when calculating weights. Please address this issue.
| trip_identifier.extend( | ||
| [np.max(trip_identifier, initial=-1) + 1] * len(additional_trip_data[0]) | ||
| ) | ||
| weights.extend([1 / additional_trip_data[0]] * len(additional_trip_data[0])) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There's a potential division-by-zero error here. additional_trip_data[0] is a NumPy array of item IDs. The expression 1 / additional_trip_data[0] performs element-wise division. If any item ID in additional_trip_data[0] is 0 (which is common, especially for the checkout item), this will raise a ZeroDivisionError.
Based on the logic in the if trip_batch_size == -1: block (line 799), it seems the intention is to use the number of items to calculate the weight. The line should likely be weights.extend([1 / len(additional_trip_data[0])] * len(additional_trip_data[0])).
| weights.extend([1 / additional_trip_data[0]] * len(additional_trip_data[0])) | |
| weights.extend([1 / len(additional_trip_data[0])] * len(additional_trip_data[0])) |
Coverage Report for Python 3.10
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage Report for Python 3.11
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage Report for Python 3.12
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No description provided.