Skip to content

Conversation

@michaelteboul
Copy link
Collaborator

Description of the goal of the PR

Description:

Changes this PR introduces (fill it before implementation)

  • : Change 1
  • : Change 2

Checklist before requesting a review

  • I have commented my code, particularly in hard-to-understand areas
  • I have typed my code
  • I have created / updated the docstrings
  • I have updated the README, if relevant
  • I have updated the requirements files if a new package is used
  • I have tested my code
  • The CI pipeline passes
  • I have performed a self-review of my code

@gemini-code-assist
Copy link
Contributor

Summary of Changes

Hello @michaelteboul, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request refines the metric calculation within the choice_learn library by improving the clarity and correctness of how metrics are averaged. It renames a key averaging parameter to average_on_trip and updates the underlying TensorFlow implementation to ensure that Negative Log Likelihood, Mean Reciprocal Rank, and Hit Rate are accurately aggregated on a per-trip basis, which is essential for consistent and meaningful evaluation in relevant contexts.

Highlights

  • Parameter Renaming: The parameter average_on_batch has been consistently renamed to average_on_trip across the NegativeLogLikelihood, MRR (Mean Reciprocal Rank), and HitRate metric classes. This change clarifies the intent of the averaging mechanism, indicating that metrics are to be averaged per 'trip' rather than per generic 'batch'.
  • Averaging Logic Update: The internal logic within the update_state methods of NegativeLogLikelihood, MRR, and HitRate has been updated. When average_on_trip is enabled, the metrics now correctly use tf.unique and tf.math.unsorted_segment_mean to compute averages based on unique 'trips' identified by the batch argument, ensuring accurate aggregation per trip.
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point by creating a comment using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands on the current page.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in pull request comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request refactors the metric classes by renaming average_on_batch to average_on_trip and implementing a more efficient and correct averaging logic using tf.math.unsorted_segment_mean. This is a significant improvement over the previous implementation, which appeared to be buggy and inefficient.

My review includes a few minor suggestions to improve code clarity and consistency. Most importantly, I've noticed that there are no unit tests for the new average_on_trip functionality. I strongly recommend adding tests to verify the correctness of the new implementation for all three metric classes (NegativeLogLikeliHood, MRR, and HitRate).

epsilon : float, optional
Lower bound for log(.), by default 1e-10
average_on_batch: bool, optional
average_on_trip: bool, optional
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

The docstring on the following lines (44-45) for this parameter still refers to 'batch'. Please update it to 'trip' for consistency with the parameter name change.

if batch is not None and self.average_on_batch:
self.mrr.assign(self.mrr + tf.reduce_mean(mean_rank))
self.n_evals.assign(self.n_evals + 1)
# mean_rank = tf.reduce_sum(tf.cast(1 / item_ranks, dtype=tf.float32), axis=self.axis)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

This commented-out code should be removed to improve code clarity.

self.n_evals.assign_add(tf.cast(tf.shape(unique_trips)[0], self.n_evals.dtype))
else:
self.mrr.assign(self.mrr + tf.reduce_sum(mean_rank))
self.mrr.assign(self.mrr + tf.reduce_sum(tf.cast(1 / item_ranks, dtype=tf.float32)))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

For consistency with the if branch and for better readability, consider using assign_add here. It would also be good to apply the same change to the update of self.n_evals on the next line for consistency.

Suggested change
self.mrr.assign(self.mrr + tf.reduce_sum(tf.cast(1 / item_ranks, dtype=tf.float32)))
self.mrr.assign_add(tf.reduce_sum(tf.cast(1 / item_ranks, dtype=tf.float32)))

@github-actions
Copy link
Contributor

Coverage

Coverage Report for Python 3.9
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2356771%111–112, 123, 141, 185, 255, 284–299, 377, 485, 585–587, 676, 762, 772, 822–830, 891–921, 931–953, 964–967, 991–1014
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1905074%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 774–849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3252792%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py1241885%186, 341, 360, 364–380
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2362360%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py905143%74, 94–99, 128–132, 149–172, 182, 196–205, 217–240, 250
TOTAL563992784% 

Tests Skipped Failures Errors Time
222 0 💤 5 ❌ 0 🔥 6m 24s ⏱️

@github-actions
Copy link
Contributor

Coverage

Coverage Report for Python 3.10
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2356771%111–112, 123, 141, 185, 255, 284–299, 377, 485, 585–587, 676, 762, 772, 822–830, 891–921, 931–953, 964–967, 991–1014
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1905074%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 774–849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3252792%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py1241885%153, 172, 176–192, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py905143%74, 94–99, 128–132, 149–172, 182, 196–205, 217–240, 250
TOTAL564192984% 

Tests Skipped Failures Errors Time
222 0 💤 5 ❌ 0 🔥 6m 51s ⏱️

@github-actions
Copy link
Contributor

Coverage

Coverage Report for Python 3.11
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2356771%111–112, 123, 141, 185, 255, 284–299, 377, 485, 585–587, 676, 762, 772, 822–830, 891–921, 931–953, 964–967, 991–1014
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1905074%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 774–849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3252792%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py1241885%186, 341, 360, 364–380
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py905143%74, 94–99, 128–132, 149–172, 182, 196–205, 217–240, 250
TOTAL564192984% 

Tests Skipped Failures Errors Time
222 0 💤 5 ❌ 0 🔥 7m 5s ⏱️

@github-actions
Copy link
Contributor

Coverage

Coverage Report for Python 3.12
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2356771%111–112, 123, 141, 185, 255, 284–299, 377, 485, 585–587, 676, 762, 772, 822–830, 891–921, 931–953, 964–967, 991–1014
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1905074%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 774–849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 53, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3252792%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py1241885%153, 172, 176–192, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py905143%74, 94–99, 128–132, 149–172, 182, 196–205, 217–240, 250
TOTAL564192984% 

Tests Skipped Failures Errors Time
222 0 💤 5 ❌ 0 🔥 7m 28s ⏱️

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants