This project explores 3D reconstruction in voxel, point cloud, and meshe respresentations from single-view images using a simple MLP decoder model.
To run the first question:
python fit_data.py --type vox|point|mesh| Ground Truth Reconstruction | Fitted Voxels |
|---|---|
![]() |
![]() |
| Ground Truth Reconstruction | Fitted Point Clouds |
|---|---|
![]() |
![]() |
| Ground Truth Reconstruction | Fitted Mesh |
|---|---|
![]() |
![]() |
To run the second question:
python train_model.py --type vox|point|meshTo evaluate it:
python eval_model.py --type vox|point|mesh| Single View RGB Image | Ground Truth Reconstruction | Fitted Voxels |
|---|---|---|
![]() |
![]() |
![]() |
| Single View RGB Image | Ground Truth Reconstruction | Fitted Point Cloud |
|---|---|---|
![]() |
![]() |
![]() |
| Single View RGB Image | Ground Truth Reconstruction | Fitted Mesh |
|---|---|---|
![]() |
![]() |
![]() |
| Voxel F1-score | Point Cloud F1-score | Mesh F1-score |
|---|---|---|
![]() |
![]() |
![]() |
| Single View RGB Image | Ground Truth Reconstruction | n_points = 1000 |
|---|---|---|
![]() |
![]() |
![]() |
n_points = 700 |
n_points = 1500 |
|---|---|
![]() |
![]() |
| Input RGB Image | Ground Truth Reconstruction | Final Fitted Points |
|---|---|---|
![]() |
![]() |
![]() |
| At 500 Iterations | At 1000 Iterations | At 3000 Iterations |
|---|---|---|
![]() |
![]() |
![]() |
To run the third question:
- Change
use_full_dataset = Trueindataset_location.py. - Run the following commands:
python train_model.py --type vox|point|mesh
python eval_model.py --type vox|point|mesh| Input RGB Image | Ground Truth Reconstruction | Fitted Points |
|---|---|---|
![]() |
![]() |
![]() |
| Single Class F1-Score | Multi-Class F1-Score |
|---|---|
![]() |
![]() |
































