Skip to content

Shamnath16/matpanda

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

18 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ§ͺ 1-Hour Data Analysis Quiz

Welcome! In this quiz, you’ll review:

  • Forking a GitHub repository
  • Using a provided Python function
  • Performing a simple data transformation
  • Creating a basic plot
  • Committing your work back to GitHub

You have 60 minutes to complete all tasks. Good luck!


πŸ“ Repository Files (Available together with this README)

  • sales.csv β€” A small dataset of product sales
  • helpers.py β€” Contains add_revenue function to help with your analysis

❗ Do not modify these files. Create new files for your work.


πŸ“‹ Your Tasks

  1. Fork this repository to your GitHub account.
  2. Clone your fork to your local machine.
  3. Create a new Python script called run_analysis.py that does the following:
    • Loads sales.csv using pandas
    • Columns: product,units,price
    • Task: Add a total_revenue column (units * price).
    • Imports and uses the add_revenue() function from helpers.py
    • Saves the updated data as sales_with_revenue.csv
    • Creates a simple bar plot of product vs revenue and saves it as revenue_plot.png
  4. Run your script to generate the output files.
  5. Deliverables (Must Be in Your Fork by Deadline):
    • Python script: run_analysis.py
    • Updated CSV: sales_with_revenue.csv with total_revenue column
    • Plot image: revenue_plot.png

Uploads are time-stamped by GitHub. Do not re-upload after deadline.


πŸ’‘ Starter Code (Put this in run_analysis.py)

# You can modify this file if you want
import pandas as pd
import matplotlib.pyplot as plt
from helpers import add_revenue

# Load data
df = pd.read_csv('sales.csv')

# Add revenue column using the provided function
df = add_revenue(df)

# Save updated CSV
df.to_csv('sales_with_revenue.csv', index=False)

# Create and save a simple bar plot
plt.figure(figsize=(8, 5))
plt.bar(df['product'], df['revenue'])
plt.title('Revenue by Product')
plt.ylabel('Revenue ($)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('revenue_plot.png')

print("βœ… Done! Check for sales_with_revenue.csv and revenue_plot.png")

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%