Skip to content

RSNA/ROADMAP

Repository files navigation

ROADMAP

Radiology Ontology for AI Datasets, Models and Projects

The Radiology Ontology for Artificial Intelligence Models, Datasets, and Projects (ROADMAP) provides a formal description of the metadata to index the growing number of artificial intelligence (AI) models and datasets, especially in diagnostic radiology.

ROADMAP builds upon generalized "model cards" and "datasheets for datasets" by highlighting features specific to medical imaging and by referencing concepts from related ontologies, coding schemes, and common data elements. In accordance with the FAIR guiding principles, application of the ontology will allow AI resources to be more readily discoverable and reusable. Its application also is expected to improve the ability to match AI models with relevant datasets and to facilitate detection of potential biases in released AI models.

Ontology

About

Radiology Ontology of AI Datasets, Models, and Projects

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published