This repository is the official implementation of 'Impute Missing Entries with Uncertainty' (AAAI, 2026).
NOTE: This repository supports WandB MLOps platform!
Download and add the datasets into data folder to reproduce our experimental results.
--dataset: dataset options (anuran,banknote,breast,concrete,default,kings,letter,loan,redwine,shoppers,whitewine)--missing_type: how to generate missing (MCAR,MAR,MNARL,MNARQ)--missing_rate: missingness rate (default:0.3)--M: the number of multiple imputation (default:100)
python main.py --dataset <dataset> --missing_type <missing_type> --missing_rate <missing_rate>
RQ1. Does U-VAE achieve state-of-the-art performance in single imputation tasks?
python imputer.py --dataset <dataset> --missing_type <missing_type> --missing_rate <missing_rate>
RQ2. Can U-VAE support statistically valid multiple imputation by capturing uncertainty in the imputed values?
python imputer.py --dataset <dataset> --missing_type <missing_type> --missing_rate <missing_rate> --M <M>
RQ3. How robust is U-VAE to varying missingness rates and patterns in sensitivity analyses?
python imputer.py --dataset <dataset> --missing_type <missing_type> --missing_rate <missing_rate>
.
+-- data
+-- assets
+-- datasets
| +-- preprocess.py
| +-- raw_data.py
+-- modules
| +-- evaluation.py
| +-- evaluation_multiple.py
| +-- metric_congeniality.py
| +-- metric_fidelity.py
| +-- metric_utility.py
| +-- missing.py
| +-- model.py
| +-- train.py
| +-- utility.py
+-- main.py
+-- imputer.py
+-- U-VAE_supp.pdf
+-- U-VAE.png
+-- README.md
