Skip to content

JABE22/MasterProject

Repository files navigation

Master Thesis Project

Sport Activity Classification Using Classical Machine Learning and Time Series Methods

Python environment dependencies

Python version 3.8.16

channels:

  • defaults

dependencies:

  • ipykernel
  • pandas
  • seaborn
  • scikit-learn
  • threadpoolctl
  • python=3.8
  • numpy
  • jinja2
  • sktime
  • tqdm

Testing environment

Device Lenovo Yoga 920-13IKB
Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (1.80 GHz)
Installed RAM 8,00 GB
System type 64-bit operating system, x64-based processor
Development environment Visual Studio Code, Jupyter extension
Version 1.74.3 (user setup)
Electron 19.1.8
Chromium 102.0.5005.167
Node.js 16.14.2
V8 10.2.154.15-electron.0
OS Windows_NT x64 10.0.22621
Sandboxed No

Jupyter Notebooks with preview are available in Kaggle

Unfortunately, GitHub does not support Jupyter Notebook preview

Dataset recording devices

Garmin FR920XT Garmin vivosport

Data collection method (feature extraction from sensors)

Sensor_feature_extraction

Study pipeline

Pipeline

Adopted models

Sklearn

  • k-Nearest Neighbors (kNN)
  • Gaussian Naive Bayes (G-NB)
  • Quadratic Discriminant Analysis (QDA)
  • Logistic Regression (LR)
  • Support Vector Machine (SVM)
  • Decision Tree (DT)
  • Random Forest (RF)
  • Multilayer Perceptron (MLP)
  • Linear Discriminant Analysis (LDA)

Sktime

  • Time Series Forest Classifier (TSF)
  • Supervised Time Series Forest (STSF)
  • Random Interval Spectral Ensemble (RISE)
  • Random Interval Classifier (RIC)
  • Shapelet Transform Classifier (STC)
  • KNeighbors Time Series Classifier (kNN-TS)
  • Composable Time Series Forest Classifier (CTSF)
  • WEASEL
  • HIVE-COTEv1.0
  • MUSE
  • Column Ensemble (STSF-STSF-RIC)

Main results of the study

Standard Classical Machine Learning (S-CML)

S-CML results

Univariate and Multivariate Time Series Classification (U-TSC and M-TSC)

TSC_reults

Result table (Compiled S-CML, U-TSC and M-TSC)

Compilation table

About

Master's Thesis project code with related files and datasets

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published