Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 21 additions & 33 deletions enrich2/selection.py
Original file line number Diff line number Diff line change
Expand Up @@ -530,23 +530,19 @@ def calc_ratios(self, label):
)
shared_counts = shared_counts.values + 0.5
elif self.logr_method == "complete":
counts_df = self.store.select(
"/main/{}/counts".format(label), "columns in ['c_0', c_last]"
)
shared_counts = (
self.store.select(
"/main/{}/counts".format(label), "columns in ['c_0', c_last]"
)
.sum(axis="index")
.values
+ 0.5
counts_df.sum(axis="index").values + 0.5 * len(counts_df)
)
elif self.logr_method == "full":
counts_df = self.store.select(
"/main/{}/counts_unfiltered".format(label),
"columns in ['c_0', c_last]",
)
shared_counts = (
self.store.select(
"/main/{}/counts_unfiltered".format(label),
"columns in ['c_0', c_last]",
)
.sum(axis="index", skipna=True)
.values
+ 0.5
counts_df.sum(axis="index", skipna=True).values + 0.5 * len(counts_df)
)
else:
raise ValueError(
Expand Down Expand Up @@ -612,20 +608,16 @@ def calc_log_ratios(self, label):
)
ratios = ratios - np.log(wt_counts.values + 0.5)
elif self.logr_method == "complete":
counts_df = self.store.select("/main/{}/counts".format(label), "columns=c_n")
ratios = ratios - np.log(
self.store.select("/main/{}/counts".format(label), "columns=c_n")
.sum(axis="index")
.values
+ 0.5
counts_df.sum(axis="index").values + 0.5 * len(counts_df)
)
elif self.logr_method == "full":
counts_df = self.store.select(
"/main/{}/counts_unfiltered".format(label), "columns=c_n"
)
ratios = ratios - np.log(
self.store.select(
"/main/{}/counts_unfiltered".format(label), "columns=c_n"
)
.sum(axis="index", skipna=True)
.values
+ 0.5
counts_df.sum(axis="index", skipna=True).values + 0.5 * len(counts_df)
)
else:
raise ValueError(
Expand Down Expand Up @@ -682,20 +674,16 @@ def calc_weights(self, label):
)
variances = variances + 1.0 / (wt_counts.values + 0.5)
elif self.logr_method == "complete":
counts_df = self.store.select("/main/{}/counts".format(label), "columns=c_n")
variances = variances + 1.0 / (
self.store.select("/main/{}/counts".format(label), "columns=c_n")
.sum(axis="index")
.values
+ 0.5
counts_df.sum(axis="index").values + 0.5 * len(counts_df)
)
elif self.logr_method == "full":
counts_df = self.store.select(
"/main/{}/counts_unfiltered".format(label), "columns=c_n"
)
variances = variances + 1.0 / (
self.store.select(
"/main/{}/counts_unfiltered".format(label), "columns=c_n"
)
.sum(axis="index", skipna=True)
.values
+ 0.5
counts_df.sum(axis="index", skipna=True).values + 0.5 * len(counts_df)
)
else:
raise ValueError(
Expand Down