Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions rag-engine/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@ pydantic
pdfplumber
requests
tiktoken
fastembed
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
import json
from typing import List
import uuid
from src.layers.chunking.models import Chunk
import tiktoken

from src.layers.chunking_embedding.models import Chunk
from src.layers.structure_analyzer.models import Section, StructuredDocument

_encoder = tiktoken.get_encoding("cl100k_base")
Expand Down
25 changes: 25 additions & 0 deletions rag-engine/src/layers/chunking_embedding/embedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
from fastembed import TextEmbedding
from typing import List
from fastembed.common.model_description import ModelSource, PoolingType

from src.layers.chunking_embedding.models import Chunk


TextEmbedding.add_custom_model(
model="intfloat/multilingual-e5-small",
pooling=PoolingType.MEAN,
normalization=True,
sources=ModelSource(hf="intfloat/multilingual-e5-small"),
dim=384,
model_file="onnx/model.onnx",
)
_embedding_model = TextEmbedding(model_name="intfloat/multilingual-e5-small")

def embed_chunks(chunks: List[Chunk], batch_size: int = 64) -> List[Chunk]:
for i in range(0, len(chunks), batch_size):
batch = chunks[i : i + batch_size]
texts = [c.text for c in batch]
vectors = list(_embedding_model.embed(texts))
for chunk, vector in zip(batch, vectors):
chunk.metadata["_embedding"] = vector.tolist()
return chunks
2 changes: 2 additions & 0 deletions rag-engine/src/process/service.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import logging
from src.layers.chunking.chunk_document import chunk_document
from src.layers.chunking.embedding import embed_chunks
from src.layers.data_extractor import extractor
from src.layers.structure_analyzer.analyzer import analyze_layout

Expand All @@ -15,6 +16,7 @@ def processFile(fileType: models.FileType, file_bytes: bytes, metadata: dict):
structured_document, extractor_meta | metadata, max_tokens=400
)
logging.info(f"pdf data extracted pages: {len(pages)}")
chunks = embed_chunks(chunks)
return [chunk.model_dump() for chunk in chunks]

raise Exception("Unspported File type")