Skip to content
This repository was archived by the owner on May 21, 2025. It is now read-only.
This repository was archived by the owner on May 21, 2025. It is now read-only.

GraphsTuple vs. batched GraphsTuple in get_get_graph_padding_mask #55

@thorben-frank

Description

@thorben-frank

Hey,

thanks for this great package. I realized that jraph.get_graph_padding_mask returns jnp.array([False]) when applied to a non-batched GraphsTuple.

I am wondering why this is? Would it be possible to check the length of jraph.GraphsTuple.n_node and return jnp.array([True]) in case it has length 1? Or does this break with some assumptions somewhere else in jraph. Below you find a minimal example.

Thanks and best,
Thorben

import jraph
import jax.numpy as jnp


def get_number_of_graphs(graph):
    """ 
    This function works for GraphsTuple and batched GraphsTuple. 
    For the latter the padding graph(s) are also counted.
    """
    return len(graph.n_node)


def is_batched_bool(graph):
    num_graphs = get_number_of_graphs(graph)
    if num_graphs <= 1:
        return False
    else:
        return True


def modified_get_graph_padding_mask(graph):
    if is_batched_bool(graph) is True:
        return jraph.get_graph_padding_mask(graph)
    else:
        return jnp.array([True])

    
graph = jraph.GraphsTuple(
    nodes=dict(
        atomic_numbers=jnp.ones((10, )),
        positions=jnp.ones((10, 3)),
        z=jnp.ones((10, 3))
    ),
    edges=None,
    receivers=jnp.arange(10),
    senders=jnp.arange(10),
    globals=dict(),
    n_node=jnp.array([10]),
    n_edge=jnp.array([10])
)


print('On unbatched graph')
print('Original version: graph_mask =', jraph.get_graph_padding_mask(graph))
print('Modified version: graph_mask =', modified_get_graph_padding_mask(graph))

batched_graph_iterator = jraph.dynamically_batch([graph, graph], n_node=11, n_edge=11, n_graph=3)
batched_graph = next(batched_graph_iterator)
print('\nOn batched graph')
print('Original version: graph_mask =', jraph.get_graph_padding_mask(batched_graph))
print('Modified version: graph_mask =', modified_get_graph_padding_mask(batched_graph))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions