-
Notifications
You must be signed in to change notification settings - Fork 19
Open
Description
I think I found a quite serious mis-implementation of GDML matrices. Luckily, this does not affect all use cases (that is why we never have seen this in our optical use case)
see this short notebook example, in which I would expect a different result:
from pyg4ometry import gdml, geant4
import numpy as npreg = geant4.Registry()mv = gdml.MatrixFromVectors([1, 2, 3], [100, 200, 300], "testmatrix", reg)mv.values[Expression : matrix_expr_idx0_val_testmatrix = expr_matrix_expr_idx0_val_testmatrix : 1*eV,
Expression : matrix_expr_idx1_val_testmatrix = expr_matrix_expr_idx1_val_testmatrix : 100,
Expression : matrix_expr_idx2_val_testmatrix = expr_matrix_expr_idx2_val_testmatrix : 2*eV,
Expression : matrix_expr_idx3_val_testmatrix = expr_matrix_expr_idx3_val_testmatrix : 200,
Expression : matrix_expr_idx4_val_testmatrix = expr_matrix_expr_idx4_val_testmatrix : 3*eV,
Expression : matrix_expr_idx5_val_testmatrix = expr_matrix_expr_idx5_val_testmatrix : 300]
--> this has the right order
mv.eval()array([[9.99999566e-07, 1.00000000e+02, 1.99999913e-06],
[2.00000000e+02, 2.99999870e-06, 3.00000000e+02]])
--> this does not have the right structure at all? It is just the values array arbitrarily folded in half?
mv.eval().reshape(-1).reshape(3, 2)array([[9.99999566e-07, 1.00000000e+02],
[1.99999913e-06, 2.00000000e+02],
[2.99999870e-06, 3.00000000e+02]])
--> this would be the right result, with the two columns in GDML organized in columns of the evaled matrix?
this is not just the transposition of the "wrong" matrix above, but a complete re-ordering of all values. (if eval() returns a matrix like this, or the transposed value, could still be discussed; especially for 1D "matrices")
Metadata
Metadata
Assignees
Labels
No labels