Skip to content

Is it possible to adopt your temporal loss on other video tasks? #3

@RaymondWang987

Description

@RaymondWang987

Hi! Thanks for the great work and releasing the code.

My question is that is it possible to adopt your temporal loss on other video tasks such as video semantic segmentation and video depth estimation? In those areas, most temporal losses are based on the optical flow warping loss, which is quite time consuming while training. Your temporal loss are used on RGB outputs. Is it possible to be extended to semantic results or depth maps?

By the way, is the temporal_loss_mode == 2 worse than temporal_loss_mode == 1 in your case? What's the reason for that case?

        ## use multi-scale relation-based loss
        elif args.temporal_loss_mode == 1:
            # blur image/area statistics/intensity
            # k_sizes = [1, 3, 5, 7]
            k_sizes = args.k_sizes
            gt_errors = []
            out_errors = []

            for i in range(len(k_sizes)):
                k_size = k_sizes[i]
                avg_blur = nn.AvgPool2d(k_size, stride=1, padding=int((k_size - 1) / 2))
                gt_error = avg_blur(label) - avg_blur(label_1)
                out_error = avg_blur(out_img) - avg_blur(out_img_1)
                gt_errors.append(gt_error)
                out_errors.append(out_error)

            gt_error_rgb_pixel_min = gt_errors[0]
            out_error_rgb_pixel_min = out_errors[0]

            for j in range(1, len(k_sizes)):
                gt_error_rgb_pixel_min = torch.where(torch.abs(out_error_rgb_pixel_min) < torch.abs(out_errors[j]),
                        gt_error_rgb_pixel_min, gt_errors[j])
                out_error_rgb_pixel_min = torch.where(torch.abs(out_error_rgb_pixel_min) < torch.abs(out_errors[j]),
                        out_error_rgb_pixel_min, out_errors[j])

            loss_temporal = F.l1_loss(gt_error_rgb_pixel_min, out_error_rgb_pixel_min)

        ## Alternatively, combine relation-based loss at different scales with different weights
        elif args.temporal_loss_mode == 2:
            # blur image/area statistics/intensity
            # k_sizes = [1, 3, 5, 7]
            k_sizes = args.k_sizes
            # k_weights = [0.25, 0.25, 0.25, 0.25]
            k_weights = args.k_weights
            loss_temporal = 0*loss

            for i in range(len(k_sizes)):
                k_size = k_sizes[i]
                k_weight = k_weights[i]
                avg_blur = nn.AvgPool2d(k_size, stride=1, padding=int((k_size - 1) / 2))
                gt_error = avg_blur(label) - avg_blur(label_1)
                out_error = avg_blur(out_img) - avg_blur(out_img_1)
                loss_temporal = loss_temporal + F.l1_loss(gt_error, out_error) * k_weight

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions